Force and Motion

Balanced and Unbalanced Forces

Fill in the blanks below:

- Two forces are balanced when they are equal in size but act in opposite directions.
- When the forces on an object are balanced, it will move at constant speed in one direction or remain at rest.
- When the forces on an object are unbalanced it will speed up (_accelerate_), slow down (decelerate) or change direction.

Vocabulary

- Resistance - A force that prevents or slows down motion.
- Drag - A force that opposes or slows a body's movement through air or water.
- Friction - The resistance to movement that occurs when two objects are in contact.
- Thrust - The force that causes an object to move forward
- Turbulence - Movement in irregular or unsteady patterns

Balanced and Unbalanced Forces

What you need to know:
What are balanced forces and how do they affect objects?

How do unbalanced forces affect objects?
How can we show the forces acting on an object?

To Do:
$>$ Draw a diagram showing the forces on somebody sitting on a lab stool

Which diagram is correct?

What is the bicycle doing?

THRUST

(A) Not moving
(B) Slowing down
(C) Speeding up
(D) Moving at constant speed

If the swimmer is floating, which diagram is correct?

What is the parachutist doing?

A Hovering in the air
B Falling at constant speed

Slowing down

DSpeeding up (plunging to a horrible death)

WEIGHT

Which diagram shows a balloon floating at a constant height?

Which car is slowing down?

Which statement is not correct?

UPTHRUST

Add arrows to show ALL the forces acting on the object indicated.

1. When was the car moving at constant speed?

4 s to 10 s and 20 s to 23 s

2. When was the car speeding up?

0 s to 4 s and 18 s to 20 s
3. When was the car stationary?

15 s to 18 s

4. When were the forces on the car balanced?

4 s to $10 \mathrm{~s}, 15$ s to 18 s and 20 s to 23 s

0 s to 4 s and 18 s to 20 s (When it was accelerating)
6. Draw a diagram of the forces acting on the car at time $=24 \mathrm{~s}$

What is the car doing at this point?

Slowing down
$15 s$?
7. What is the average speed between Os and

$$
\text { Speed }=\frac{6}{15}=0.40 \mathrm{~m} / \mathrm{s}
$$

Time $=15 \mathrm{~s}$
Distance $=6 \mathrm{~m}$

Did you set out your calculations correctly?

8. What is the speed of the car at 15 s ?

$0 \mathrm{~m} / \mathrm{s}$

(It's not moving!)

15s?
9. What is the maximum speed of the car between 0s and

$$
\text { Speed }=\frac{2.5}{4}=0.63 \mathrm{~m} / \mathrm{s}
$$

Why is this not the same as the average speed?

Average speed is lower as car
Distance $=4.5-2.0$
$=2.5 \mathrm{~m}$
spends some time speeding up and slowing down

Balanced and Unbalanced Forces

- Video

