Name			
Date	Per.	<u></u>	
Force and Moti	on Power Po	oint Notes	
Motion:			
Position:			
Reference Point:			
An object is moving if its po	osition changes comp	ared to a referenc	e point.
Distance:			
Speed:			
Formula for Speed:			
Question: If a cyclist travel	s 45 kilometers in 3 h	ours, what is his	speed?
Answer:			
*** It is real	ly important to use un	nits in your answe	r.***
FYI: Knowing the speed at its motion. To describe an	object's motion comp of its moti	oletely, you need on. For example	to know the c, suppose you hear
that a thunderstorm is trave storm? That depends on th			ou prepare for the
Velocity:			
Symbols for Motion	Symbol	Term	
	d		
	V		
	+		

FYI: You know the velocity of the storm when you know that it is moving 25 km/h eastward.

What is a Force?
A force is
Forces can
For Example:
• A soccer player's foot touches a ball as he kicks it along the ground.
• A student's hand touches a book as he lifts it out of a backpack.
Two Types of Forces •
Balanced Forces are:
Examples of Balanced Forces:
• A ball at rest on a soccer field will not move until it is kicked.
• A chair will stay in place until it is pushed.
Unbalanced Forces are:
Example of Unbalanced Forces:

• Two teams pull on a rope in opposite directions. If one team pulls harder on the rope, the forces are unbalanced.

<u>Forces Acting – Direct Contact</u>
• can slow the motion of an object or keep an object
from moving at all.
 Without friction, every surface would be more slippery, walking would be impossible and you would not be able to hold a pencil or write on paper.
Forces Acting From a Distance
Forces
Forces
Gravity - A force that
Question: Would you be surprised if you let go of a pen you were holding and it did not fall?
One person who put a great deal of thought into this question was Sir Isaac Newton. He concluded that a force acts to pull objects straight down toward the center of the Earth.
For Example:
Newton realized that gravity acts everywhere in the universe, not just on Earth. It is the force that makes an apple fall to the ground. It is the force that keeps the moon orbiting around Earth. It is the force that keeps all of the planets in our solar system orbiting around the sun!!
Momentum:

FYI: The more momentum (the bigger it is and the faster it is moving) a moving object has, the harder it is to stop. For example, you can catch a baseball moving 20 m/s, but you cannot stop a car moving at the 40 m/s. The car has more momentum because it is bigger and faster than the baseball!

For Example:
Lurching forward in your seat as the bus you are riding in suddenly slowed down
Acceleration:
Acceleration refers to:
Increasing
Newton's Second Law of Motion
Acceleration is produced when a The greater the mass (of the object being accelerated) the greater the amount of force needed (to accelerate the object).
For Example:
An empty grocery cart takes less force to push than a full grocery cart. If your empty cart was rolling down a hill, it would take much less force to stop it than a full grocery cart.
Newton's Third Law of Motion
For Example:
If you push on a wall, it will push back on you as hard as you are pushing on it.