Name \qquad
Date \qquad Per. \qquad

Density

Calculating Density
To find the volume of a regular-shaped object use the formula:
\qquad X \qquad X \qquad

Find the volume of the cube below.

\qquad X \qquad X \qquad $=$ \qquad
$1 \mathrm{~cm}^{3}=1$ cubic cm

Water is the standard when comparing the densities of different objects.
1 mL of water would fill up $1 \mathrm{~cm}^{3}$, therefore 1 mL of water $=1 \mathrm{~cm}^{3}$
1 mL of water $=1 \mathrm{~g}$ of water, therefore 1 mL of water $=1 \mathrm{~cm}^{3}$ of water $=1 \mathrm{~g}$ of water
10 mL of water $=$ \qquad $\mathrm{cm}^{3}=\quad \mathrm{g}$ of water.
200 mL of water $=$ \qquad $\mathrm{cm}^{3}=$ \qquad g of water.

Density $=\frac{\text { Mass }}{\text { Volume }}$

Density $=\frac{M}{V}$
\qquad $=\quad \square$ /

Name
Date \qquad

Calculate Density and Identify Substances Using a Density Chart

Density is a measure of the amount of mass in a certain volume.
This physical property is often used to identify and classify substances.
It is usually expressed in grams per cubic centimeters, or $\mathrm{g} / \mathrm{cm}^{3}$.
The chart on the right lists the densities of some common materials.

Equation: \quad density $=\frac{\text { mass }}{\text { volume }} \quad \mathrm{D}=\frac{\mathrm{m}}{\mathrm{V}}$

Sample Problem: What is the density of a billiard ball that has a volume of $100 \mathrm{~cm}^{3}$ and a mass of 250 g ?

Densities of Substances

Substance	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Gold	19.3
Mercury	13.5
Lead	11.4
Iron	7.87
Aluminum	3.7
Bone	$1.7-2.0$
Gasoline	$0.66-0.69$
Air (dry)	0.00119

$\mathrm{D}=\frac{250 \mathrm{~g}}{100 \mathrm{~cm}^{3}}$
$\mathrm{D}=2.5 \mathrm{~g} / \mathrm{cm}^{3}$

Your turn! Show your work!

1. A loaf of bread has a volume of $2270 \mathrm{~cm}^{3}$ and a mass of 454 g . What is the density of the bread?
2. A liter of water has a mass of 1000 g . What is the density of water? (Hint: $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$)
3. A block of wood has a density of $0.6 \mathrm{~g} / \mathrm{cm}^{3}$ and a volume of $1.2 \mathrm{~cm}^{3}$. What is the mass of the block of wood? Be careful!
4. Use the data below to calculate the density of each unknown substance. Then use the density chart above to determine the identity of each substance.
$\left.\begin{array}{lcll}\text { Mass }(\mathrm{g}) & \text { Volume }\left(\mathrm{cm}^{3}\right) & \text { Density }\left(\mathrm{g} / \mathrm{cm}^{3}\right) & \text { Substance } \\ \text { Example: } & 350 & \underline{4725 \div 350=13.5} & \text { mercury } \\ 4725 & 15 & - & - \\ 171 & 40 & - & - \\ 148 & 250 & & - \\ 475 & 1000 & & \\ 680 & & & \end{array}\right]$
